
Advanced biofuels from renewable lignocellulosic biomass—
plant stalks, trunks, stems, and leaves—are expected to 
achieve multiple societal benefits. These benefits include 

ensuring future energy security, lowering greenhouse gas produc-
tion to mitigate climate impacts, diversifying the range of available 
biobased products, producing less toxic chemicals and byproducts, 
creating jobs in rural areas, and improving the U.S. trade balance.

The U.S. Department of Energy (DOE) established three Bioenergy 
Research Centers (BRCs) in 2007 to accelerate transformational break-
throughs in the basic sciences needed to develop cost-effective, sustain-
able, commercial production of cellulosic biofuels on a national scale. 
These centers are part of the Genomic Science program within DOE’s 
Office of Biological and Environmental Research (BER), which is man-
aged under DOE’s Office of Science. The BRCs coordinate sustainable 
biofuels research along the entire pathway, from creating new energy 
crops and new methods for deconstructing lignocellulosic material into 
chemical building blocks to creating new metabolic pathways inserted 
into microbial hosts to produce ethanol and other hydrocarbon fuels. 
This center-scale approach allows technology development specialists 
to design automated pipelines that streamline workflows and increase 
research efficiencies, enables the testing of research ideas from proof of 
concept to field trials, and allows research breakthroughs in one area to 
immediately inform research direction in other areas.

The three BRCs are based in the geographically diverse South-
east, Midwest, and West Coast regions. BRC partners include 
universities, private companies, nonprofit organizations, and DOE 
national laboratories.

 • BioEnergy Science Center (BESC; Oak Ridge, Tennessee) is devel-
oping better understanding of how to modify plant cell wall com-
ponents to facilitate deconstruction and conversion and developing 
thermophilic cellulolytic microbes for consolidated bioprocessing.

 • Great Lakes Bioenergy Research Center (GLBRC; Madison, 
Wisconsin) aims to increase the energy density of grasses by 
understanding and manipulating the metabolic and genetic circuits 
that control the accumulation of easily digestible, energy-rich 
compounds in plant tissues.

 • Joint BioEnergy Institute ( JBEI; Emeryville, California) is 
applying synthetic biology to engineer microbes that convert 
sugars into advanced biofuels and plants that overproduce 
preferred polysaccharides.

Leading the World in Fundamental  
Biofuels-Relevant Research
These three BRCs have generated a number of important break-
throughs toward developing new dedicated bioenergy feedstocks 
and new products from renewable biomass. These significant 
achievements include (1) demonstrating that lignin composition 
and deposition can be genetically engineered to reduce plant cell 
wall recalcitrance without impacting plant viability; (2) developing 
effective, commercially adaptable biomass pretreatments to lower 
costs; (3) discovering novel microbes and enzymatic pathways for 
more efficient deconstruction of lignocellulosic biomass; (4) con-
ducting proof-of-concept research for consolidated bioprocessing 

(i.e., the production of ethanol and 
other biofuels by naturally cellulo-
lytic microbes directly from nonpre-
treated biomass); (5) metabolically 
engineering microorganisms and 
plants for biological production of 
numerous advanced biofuels or their 
immediate precursors; and (6) iden-
tifying hundreds of new plant genes 
and developing an understanding of 
their role in cell wall biosynthesis.

These and other BRC breakthroughs 
are highlighted on the following pages. 
Through intellectual property licensing 
agreements, partnerships, and targeted 
collaborative affiliations, DOE’s BRCs 
are working to speed the translation 
of basic research results to industry 
for contributions to clean energy (see 
graph, DOE Bioenergy Research 
Centers, this page).
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Overcome the natural resistance of plant biomass to microbial and 
chemical hydrolysis through the development and optimization of 

high-yield, sustainable feedstocks that are easily converted into biofuels. 

Advances and Results
 • Discovered that the major plant cell wall 

polymers (i.e., cellulose, lignin, hemi-
cellulose, and pectin) all contribute to 
recalcitrance, information that is assisting 
in fine-tuning cell wall properties to render 
biomass more amenable to biofuel con-
version (Kalluri, Yin, and Davison 2014; 
Baxter et al. 2014; Biswal et al. 2015).

 • Conducted a comprehensive systems 
biology study of Populus and switchgrass to 
identify natural variants with modified composition; findings advance 
opportunities for rapid discovery of specific genes best suited for pro-
ducing biofuel from biomass planted in different environments (Serba 
et al. 2015; Muchero et al. 2015; Evans et al. 2014).

 • Revealed robust, reduced-recalcitrance phenotypes and better 
growth with field trials of high-performing Populus and switchgrass 
lines, demonstrating that transgenic feedstocks can be maintained in 
the field (Baxter et al. 2014).

 • Manipulated transcription factors to reduce cell wall recalcitrance and 
enhance polysaccharide accumulation, with no significant impacts on 
plant growth and development (Vega-Sánchez et al. 2015).

 • Identified and characterized several novel plant nucleotide sugar 
transporters that are powerful tools for cell wall engineering (Ebert 
et al. 2015).

 • Coupled metabolomics analysis with genetic information to identify 
metabolite-gene associations, yielding critical insights into biomass 
formation in Populus (Payyavula et al. 2014).

 • Modified the lignin biosynthetic pathway to enable design of plant 
cell walls that are easier and cheaper to convert into fuels and chemi-
cals (Wilkerson et al. 2014).

 • Altered lignin content and composition in planta to enhance biomass 
deconstructibility, significantly reducing the amount of energy 
required for higher sugar yields from pretreatment (Eudes et al. 
2016; Scullin et al. 2015).

Increase the energy efficiency and cost-effectiveness of processes for 
deconstructing lignocellulosic biomass into its constituent sugars, 

while minimizing the formation of inhibitors and using as few chemicals 
as possible. 

Advances and Results
 • Developed and demonstrated an afford-

able, scalable biomass deconstruction 
technology based on ionic liquids for a 
wide range of single and blended feed-
stocks (Sun et al. 2015; Papa et al. 2015; 
Li et al. 2015).

 • Discovered a renewable solvent (gamma-
valerolactone) derived from biomass that 
can produce sugar and lignin streams from 
multiple biomass sources without expensive biomass-degrading 
enzymes (Alonso, Wettstein, and Dumesic 2013; Luterbacher et al. 
2014; Luterbacher et al. 2015).

 • Developed a novel pretreatment method (e.g., cosolvent-enhanced 
lignocellulosic fractionation) that greatly reduces enzyme loadings 
compared to traditional dilute acid pretreatment and significantly 
increases biofuel yields (Ngyuyen et al. 2015a; Nguyen et al. 2015b; 
Smith et al. 2015).

 • Optimized biocatalyst-feedstock combinations to achieve high solu-
bilization, demonstrating the potential for biomass processing with 
little or no thermochemical pretreatment (Paye et al. 2016).

 • Identified enzymes that can enhance the hydrolyzation of multiple 
polysaccharides derived from plant cell walls into fermentable sugars 
(Deng et al. 2014; Takasuka et al. 2014; Deng et al. 2015a; Deng 
et al. 2015b; Walker et al. 2015). 

 • Conducted targeted bioprospecting in unique environments for 
novel enzymes, revealing diverse microbial communities that 
potentially could efficiently deconstruct plant polysaccharides 
(Vishnivetskaya et al. 2014; Yu et al. 2015; Simmons et al. 2014).

 • Discovered and optimized a cellulase mixture that tolerates ionic liq-
uids, which could provide a new, more efficient and tunable biomass 
pretreatment method (Gladden et al. 2014; Shi et al. 2013).

 • Discovered that Clostridium thermocellum (anaerobic, thermophilic 
microorganism) performs demonstrably better than industry-
standard fungal cellulases; findings are being used to develop 
optimal systems for breaking down lignocellulosic biomass (Paye 
et al. 2016; Xu et al. 2016).

 • With Mascoma Inc., engineered yeasts that more efficiently convert 
cellulose to sugar than previous strains; these yeasts are used in 
about 20% of corn ethanol production, with C5-utilizing strains now 
available for cellulosic ethanol production (Guilliams et al. 2016; 
Henningsen et al. 2015).

Develop improved methods of converting plant sugars into fuels, 
along with synthesis processes for new fuels in addition to ethanol.

Advances and Results
 • Used genomic knowledge of how various plant-derived compounds 

negatively impact the performance of biofuel microbes to engineer 
strains with increased tolerance to individual inhibitors, thereby increas-
ing biomass conversion rates and ethanol yields (Piotrowski et al. 2014; 
Piotrowski et al. 2015a; Piotrowski et al. 2015b; Dickinson et al. 2016; 
Pisithkul et al. 2015; Keating et al. 2014; Parreiras et al. 2014).

 • Elucidated the mechanisms of ionic liquid tolerance in microbes, 
which could advance the development of gene expression systems 
for tolerance mechanisms of other toxic compounds (Ruegg et al. 
2014; Frederix et al. 2014; Dickinson et al. 2016).

 • Used targeted proteomics for biofuel metabolic pathway and protein 
monitoring, proving its use as an efficient quantitative analysis 
method (Alonso-Gutierrez et al. 2015; Dickinson et al. 2016).

 • Optimized production of select advanced biofuels using model 
hydrolysates (Kirby et al. 2015; Kang et al. 2015; Foo et al. 2014).

 • Developed a consolidated process for pretreatment, saccharification, 
and fermentation using ionic liquids, with potential to significantly 
reduce biofuel production costs (Xu et al. 2016; Liszka et al. 2016; 
Frederix et al. 2016).

 • Developed the capability to genetically engineer both C. thermo-
cellum and Caldicellulosiruptor bescii (thermophilic, cellulolytic 
anaerobes) to produce more desired biofuels and bioproducts 
(Chung et al. 2013; Olson, Sparling, and Lynd 2015).

 • Efficiently converted mixed lignocellulosic feedstocks into isopen-
tenol and other advanced biofuels using ionic liquids, offering a 
solution for overcoming biomass supply challenges (Shi et al. 2015).

Lignin as a Valuable Resource Instead of a Waste Product
 • Converted lignin into “bionic liquids,” which could replace ionic 

liquids derived from nonrenewable sources such as petroleum or 
natural gas (Socha et al. 2014). 

 • Developed methods for removal or bioconversion of aromatic 
compounds from lignin, potentially leading to higher-value products 
crucial to the economic viability of integrated biorefineries (Luter-
bacher et al. 2015; Rahimi et al. 2014; Austin et al. 2015). 

 • Characterized the structure and biochemistry of lignin-degrading 
enzymes, providing new insight into their catalysis mechanisms and 
informing future enzyme engineering efforts (Pereira et al. 2016; 
Helmich et al. 2016).

 • Developed a novel assay for lignin-degrading enzymes, potentially 
enabling rapid assessment of catalytic, enzymatic, and microbial 
degradation of lignin (Kent et al. 2015).

 • Identified novel lignin-degradation genes in multiple natural envi-
ronments (Hudson et al. 2015; Woo et al. 2014).

Enabling Technologies

Develop new technologies to facilitate and accelerate BRC research, 
including, but not limited to, high-throughput laboratory 

technologies and computational and information systems, several of 
which have applications to biological research as a whole. 

 • Developed rapid methods for analyzing cell wall structure and 
integrity in plants and during processing, providing a foundation for 
high-throughput profiling and correlating pretreatment conditions 
with biomass digestibility (Lu and Ralph 2014; Kim and Ralph 
2014; Vismeh et al. 2013; Tobimatsu 2013; Chylla et al. 2013).

 • Developed glycome profiling to analyze plant cell wall polysaccha-
rides; immunological approach is aimed at understanding the spatial 
distribution of secondary cell wall components affecting recalci-
trance (Pattathil et al. 2015).

 • Developed nanostructure-initiator mass spectrometry (NIMzyme) 
technology to rapidly screen glycoside hydrolases, which are key plant 
cell wall–degrading enzymes (Deng et al. 2015b; Deng et al. 2014).

 • Developed and deployed new synthetic biology software tools 
(i.e., DIVA and j5) for more efficient genetic design, transformation, 
and manipulation (Hillson 2014; Galdzicki et al. 2014; Hillson, 
Rosengarten, and Keasling 2012).

 • Created a new suite of bioinformatics tools for metagenomics and 
plants (Wu, Simmons, and Singer 2015; Lee et al. 2015; Mann 
et al. 2013).

 • Developed and deployed synthetic biology on a chip; automated 
microfluidic platform has the potential to significantly reduce the 
design-build-test cycle (Linshiz et al. 2014; Gach et al. 2016; Shih  
et al. 2015).

Sustainability and Economic Analysis

Produce biomass for biofuels with no negative impacts on food 
production or the environment. 

 • Determined that marginal lands can provide significant cellulosic 
biomass, along with substantial climate change mitigation and other 
environmental benefits, allowing fertile lands to be reserved for food 
production (Gelfand and Robertson 2015).

 • Incorporated state-of-the-art technologies into an open, wiki-
based technoeconomic model that simulates critical factors in the 
biorefinery process (e.g., production costs and energy balances) 
under different scenarios, enabling researchers to focus on the 
most promising strategies for cost-efficient operations (Klein-
Marcuschamer and Blanch 2015; Konda et al. 2014).

Bioenergy Research Centers: Key Advances for Lignocellulosic Biofuels Production
The U.S. Department of Energy’s three Bioenergy Research Centers (BRCs) have made numerous advances toward overcoming critical challenges to cost-effective production 
of renewable fuels from biomass. Select BRC advances (from 2014 to present) listed below are key to improved biomass feedstocks, deconstruction, and conversion, as well 
as the cross-cutting areas of enabling technologies and sustainability. Results from BRC research are grouped under their respective challenges and goals. 

Improved Biomass Deconstruction Conversion Cross-Cutting Achievements

[Note: Full references appear on the back page of this document. For easier 
access, direct links to most of the abstracts are provided in the online version 
of this document at: genomicscience.energy.gov/centers/brcbrochure/.]
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